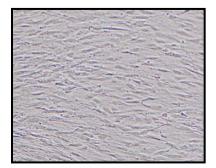


SKELETAL INNOPROFILE[™] RAT CALVARIAL OSTEOBLASTS

Product Type: Catalog Number: Source: Number of Cells: Storage:


Cryo-preserved Osteoblasts P10931 Rat Calvariae 5 x 10⁵ Cells / vial (1ml) Liquid Nitrogen

Rat Calvarial Osteoblasts (RCO) provided by Innoprot are isolated from the calvaria bone of neonatal Sprague-Dawley rats. RCO are cryopreserved at primary cultures and delivered frozen. RCO are guaranteed to further expand for 10 population doublings in the conditions provided by Innoprot.

Bone is a dynamic tissue, being continuously remodeled by the coordinated actions of osteoclasts and osteoblast lineage. Osteoblasts, the bone-forming cells, are derived originally from pluripotent mesenchymal stem cells. They synthesize and secrete organic extracellular matrix, osteoid, which is composed primarily of type I collagen. Osteoid is calcified by osteoblasts and during this process the cells become encased in lacunae within the calcified material and become osteocytes. Osteoblasts express protease-activated receptor-1 and vescular endothelial cell growth factor . Studies show that Leukemia inhibitory factor can bind to the osteoblast cell surface and induce bone formation both in vitro and in vivo.

📀 Recommended Medium

 Osteoblast Medium (Reference: P60119)

🔊 Product Characterization

 Alkaline phosphatase
The cells test negative for HIV-1, HBV, HCV, mycoplasma, bacteria, yeast and fungi

😂 Product Use

THESE PRODUCTS ARE FOR RESEARCH USE ONLY. Not approved for human or veterinary use, for application to humans or animals, or for use in vitro diagnostic or clinical procedures

INNOVATIVE TECHNOLOGIES IN BIOLOGICAL SYSTEMS, S.L. Parque Tecnológico Bizkaia, Edifício 502, 1ª Planta | 48160 | Derio | Bizkaia Tel.: +34 944005355 | Fax: +34 946579925 innoprot@innoprot.com | www.innoprot.com

INSTRUCTIONS FOR CULTURING CELLS

IMPORTANT: Cryopreserved cells are very delicate. Thaw the vial in a 37 °C waterbath and return them to culture as quickly as possible with minimal handling!

Set up culture after receiving the order:

- Prepare a poly-L-lysine coated flask (2 μg/cm², T-75 flask is recommended). Add 10 ml of sterile water to a T-75 flask and then add 150 μl of poly-Llysine stock solution (1 mg/ml, Innoprot cat. no. PLL). Leave flask in incubator overnight (minimum one hour at 37°C incubator).
- 2. Prepare complete medium: decontaminate the external surfaces of medium and medium supplements with 70% ethanol and transfer them to sterile field. Aseptically open each supplement tube and add them to the basal medium with a pipette. Rinse each tube with medium to recover the entire volume.
- 3. Rinse the poly-L-lysine coated flask with sterile water twice and add 20 ml of complete medium to the flask. Leave the flask in the hood and go to thaw the cells.
- 4. Place the vial in a 37^oC waterbath, hold and rotate the vial gently until the contents are completely thawed. Remove the vial from the waterbath immediately, wipe it dry, rinse the vial with 70% ethanol and transfer it to a sterile field. Remove the cap, being careful not to touch the interior threads with fingers. Using a 1 ml eppendorf pipette gently resuspend the contents of the vial.
- 5. Dispense the contents of the vial into the equilibrated, poly-L-lysine coated culture vessels. A seeding density of 5,000 cells/cm² is recommended.
- Note: Dilution and centrifugation of cells after thawing are not recommended since these actions are more harmful to the cells than the effect of DMSO residue in the culture.

INNOVATIVE TECHNOLOGIES IN BIOLOGICAL SYSTEMS, S.L. Parque Tecnológico Bizkaia, Edifício 502, 1ª Planta | 48160 | Derio | Bizkaia Tel.: +34 944005355 | Fax: +34 946579925 innoprot@innoprot.com | www.innoprot.com

- It is also important that osteoblasts are plated in poly-L-lysine coated culture vessels that promote osteoblast attachment.
- 6. Replace the cap or cover of flask, and gently rock the vessel to distribute the cells evenly. Loosen cap if necessary to permit gas exchange.
- 7. Return the culture vessels to the incubator.
- 8. For best result, do not disturb the culture for at least 16 hours after the culture has been initiated. Change the growth medium the next day to remove the residual DMSO and unattached cells, then every other day thereafter.

Maintenance of Culture:

- 1. Change the medium to fresh supplemented medium the next morning after establishing a culture from cryopreserved cells.
- 2. Change the medium every three days thereafter, until the culture is approximately 70% confluent.
- 3. Once the culture reaches 70% confluence, change medium every other day until the culture is approximately 90% confluent..

Subculture:

- 1. Subculture the cells when they are over 90% confluent.
- 2. Prepare poly-L-lysine coated flasks (2 μ g/cm²) one day before subculture.
- 3. Warm medium, trypsin/EDTA solution (T/E Solution), trypsin neutralization solution (TNS), and DPBS to room temperature. We do not recommend warming the reagents and medium at 37°C waterbath prior to use.
- 4. Rinse the cells with DPBS.
- 5. Add 8 ml of DPBS first and then 2 ml of trypsin/EDTA solution into flask (in the case of T-75 flask); gently rock the flask to make sure cells are covered by trypsin/EDTA solution; incubate the flask at 37°C incubator for 1 to 2 minutes or until cells are completely rounded up (monitored with inverted During incubation, microscope). prepare a 50 ml conical centrifuge tube with 5 ml of fetal bovine serum (FBS); transfer trypsin/EDTA solution from the flask to the 50 ml centrifuge tube (a few percent of cells may detached); continue incubate the flask at 37°C for 1 minutes (no solution in the flask at this moment); at the end of trypsinisation, one hand hold one side of flask and the other hand gently tap the other side of the flask to detach cells from attachment; check the flask under inverted microscope to make sure all cells are detached, add 5 ml of trypsin neutralization solution to the flask and transfer detached cells to the 50 ml centrifuge tube: add another 5 ml of TNS to harvest the residue cells and transfer it to the 50 ml centrifuge tube. Examine the flask under inverted microscope to make sure the cell harvesting is successful by looking at the number of cells left behind. There should be less than 5%.
- Note: DPBS, trypsin/EDTA solution & trypsin neutralization solution (TNS) are included in the "Primary Cells Detach Kit provided by Innoprot (Cat. № P60305).

tion 7. Count cells and plate cells in a new, tion poly-L-lysine coated flask with cell com density as recommended. end

> **Cautions** Handling human derived products is potentially bioharzadous. Although each cell strain testes negative for HIV, HBV and HCV DNA, diagnostic tests are not necessarily 100% accurate, therefore, proper precautions mush be taken to avoid inadvertent exposure. Always wear gloves and safety glasses when working these materials. Never mouth pipette. We recommend following the universal procedures for handling products of human origin as the minimum precaution against contamination [1].

6. Centrifuge the 50 ml centrifuge tube

suspend cells in growth medium.

(harvested cell suspension) at 1000

rpm (Beckman Coulter Allegra 6R centrifuge or similar) for 5 min; re-

 Grizzle, W. E., and Polt, S. S. (1988) Guidelines to avoid personal contamination by infective agents in research laboratories that use human tissues. *J Tissue Culture Methods*. 11(4).

INNOVATIVE TECHNOLOGIES IN BIOLOGICAL SYSTEMS, S.L. Parque Tecnológico Bizkaia, Edifício 502, 1ª Planta | 48160 | Derio | Bizkaia Tel.: +34 944005355 | Fax: +34 946579925 innoprot@innoprot.com | www.innoprot.com